Mainframe Secondary Audit

This smart contract audit was prepared by Quantstamp, the protocol for securing
smart contracts.

This security audit report follows a generic template. Future Quantstamp reports
will follow a similar template and they will be fully generated by automated
tools.

Specification

Our understanding of the specification was based on the following documentation:
¢ Mainframe Token Contracts README

We also reviewed all instructions provided in the Github repository, ERC20
branch during the time of audit.

Methodology

The review was conducted during 2018-July-04 by the Quantstamp team, which
included auditing intern Nadir Akhtar and senior engineer Martin Derka.

Their procedure can be summarized as follows:

1. Code review
1. Review of the specification
2. Manual review of code
3. Comparison to specification
2. Itemize recommendations

Source Code

The following source code was reviewed during the audit.

Repository Commit

contracts (branch: ERC20) 162b46a

Security Audit

This Mainframe Token Security Audit is to provide the Mainframe team with a
cursory look into their ERC20 fork of their contracts GitHub repository. The


https://www.quantstamp.com/
https://github.com/MainframeHQ/contracts/blob/162b46a7312c3ec8ec1bf5101225a3cd5422bace/README.md
https://github.com/MainframeHQ/contracts/tree/ERC20
https://github.com/MainframeHQ/contracts/tree/ERC20
https://github.com/MainframeHQ/contracts/tree/ERC20
https://github.com/MainframeHQ/contracts/commit/162b46a7312c3ec8ec1bf5101225a3cd5422bace

report aims to identify any issues or vulnerabilities arising from the transition
from an ERC827 token standard to an ERC20 token standard. Because of
limited time to perform this audit, only the contracts MainframeToken.sol and
MainframeTokenDistribution.sol were reviewed, as they are the only ones
substantially affected by the transition. This is intended to be supplementary to
the previous audit, meaning that unresolved vulnerabilities from the previous
audit may not be noted in this report.

Context

The MainframeToken.sol contract transitioned from ERC827 to ERC20. Only
the new token and its new structure’s implications on the rest of the contracts
are in scope for this review.

Evaluation

The modified token contracts are secure. Only one method was found to be at
risk of failing, but as it is callable by the owner only, it poses no danger to other
users.

Method with Unlimited Gas Consumption

In smart contracts, for loops are often prone to vulnerabilities given the nature
of transactions and the concept of gas: The gas necessary for executing such a
loop is proportional to the number of iterations. Using is safe when the number
of iterations is predictable, but against the best practices if unknown.

In MainframeTokenDistribution.sol, the distributeTokens() function
loops through all recipients passed to the smart contract. Because the number
of recipients is unbounded, it is possible that the transaction will consume
so much gas that it will not be able to fit within a block. In addition, if the
transferFrom() function ever failed, it would revert all progress thus far. To
mitigate both these issues, it is much safer to break that functionality into
smaller, digestible pieces.

Recommendation

The Quantstamp team recommends replacing the loop with method with
signature sendTokens(address tokenOwner, address recipient, uint256
value) that implements a single iteration of that loop, and calling this method
for every recipient instead. To ensure no recipient receives tokens twice, the con-
tract can be maintain a mapping from address to bool tracking which recipients
have received tokens, or require that mainframeToken.balanceOf (recipient)
== 0).



Other Issues

These other issues, though not immediate security vulnerabilities, were still
concerns to the Quantstamp team. If possible, take some time to fix the
following potential problems.

e Infile MainframeToken.sol in the validDestination modifier, we suggest
that require(address != 0x0) be included in this modifier as well.

e Both MainframeToken#47,51 and MainframeTokenDistribution#8,19
accept uint parameters. We suggest that those be turned into uint256.

¢ Consider making the emergencyERC20Drain () functions of MainframeToken.sol

identical to that of MainframeTokenDistribution.sol to drain any and
all accidental tokens, as there is likely no scenario in which it would be
preferable to only drain, say, half.

Appendix

File Signatures

Below are SHA256 file signatures of the relevant files reviewed in the audit.

$ shasum -a 256 ./contracts/x*

240b17a721e3d9e301£90a860c49b9988£8ad27a003de2a5d129¢c9d6a3d0f048
dffad4902acdaabe2fd6a5dab539162680b4ae320a0d364c3e5ba870dc9£36dd49
4318e60152f648e4fef2b55813e138cccfe96ef533bbab2b12b00ef60£d4038f
138b99e76c412e6a7e5533c968aa07a7a7a69d43b93d83bf4062ffe9f380a5a4
83133eb4afed383dd8dcb4ed29e1b998c93a8a40fec88f8afal3delebc74f5bbbd

Disclosure

Purpose of report

The scope of our review is limited to a review of Solidity code and only the

source code we note as being within the scope of our review within this report.

Cryptographic tokens are emergent technologies and carry with them high levels
of technical risk and uncertainty. The Solidity language itself remains under
development and is subject to unknown risks and flaws. The review does not
extend to the compiler layer, or any other areas beyond Solidity that could
present security risks.

The report is not an endorsement or indictment of any particular project or

team, and the report does not guarantee the security of any particular project.

This report does not consider, and should not be interpreted as considering or

./contracts/MainframeStake
./contracts/MainframeToke:
./contracts/MainframeToker
./contracts/Migrations.so:
./contracts/StakeInterface



having any bearing on, the potential economics of a token, token sale or any
other product, service or other asset.

No third party should rely on the reports in any way, including for the purpose
of making any decisions to buy or sell any token, product, service or other
asset. Specifically, for the avoidance of doubt, this report does not constitute
investment advice, is not intended to be relied upon as investment advice, is
not an endorsement of this project or team, and it is not a guarantee as to the
absolute security of the project.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites
operated by persons other than Quantstamp Technologies Inc. (QTI). Such
hyperlinks are provided for your reference and convenience only, and are the
exclusive responsibility of such web sites’ owners. You agree that QTI are not
responsible for the content or operation of such web sites, and that QTI shall
have no liability to you or any other person or entity for the use of third-party
web sites. Except as described below, a hyperlink from this web site to another
web site does not imply or mean that QTI endorses the content on that web
site or the operator or operations of that site. You are solely responsible for
determining the extent to which you may use any content at any other web sites
to which you link from the report. QTI assumes no responsibility for the use of
third-party software on the website and shall have no liability whatsoever to any
person or entity for the accuracy or completeness of any outcome generated by
such software.

Timeliness of content

The content contained in the report is current as of the date appearing on the
report and is subject to change without notice, unless indicated otherwise by
QTTI; however, QTT does not guarantee or warrant the accuracy, timeliness, or
completeness of any report you access using the internet or other means, and
assumes no obligation to update any information following publication.



	Mainframe Secondary Audit
	Specification
	Methodology
	Source Code

	Security Audit
	Context
	Evaluation
	Method with Unlimited Gas Consumption
	Other Issues


	Appendix
	File Signatures

	Disclosure
	Purpose of report
	Links to other websites
	Timeliness of content


